Abstract

In the relational model, inclusion dependencies (INDs) convey many information on data semantics. They generalize foreign keys, which are very popular constraints in practice. However, one seldom knows the set of satisfied INDs in a database. The IND discovery problem in existing databases can be formulated as a data-mining problem. We underline that the exploration of IND expressions from most general (smallest) INDs to most specific (largest) INDs does not succeed whenever large INDs have to be discovered. To cope with this problem, we introduce a new algorithm, called Zigzag, which combines the strength of levelwise algorithms (to find out some smallest INDs) with an optimistic criteria to jump more or less to largest INDs. Preliminary tests, on synthetic databases, are presented and commented on. It is worth noting that the main result is general enough to be applied to other data-mining problems, such as maximal frequent itemsets mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.