Abstract

Development of nonprecious metal-based electrocatalysts supporting hydrogen evolution reaction (HER) in the entire pH range has gained significant importance for harvesting green and renewable energy. Herein, we developed a novel electrocatalyst based on 3D carbon nanoarchitecture hybrid, which consists of CoP nanoparticles (CoP NPs) embedded into N-doped carbon nanotubes (NCNT), grafted on carbon polyhedron (CoP/NCNT-CP) that was prepared by carbonization and low-temperature phosphatization treatment of cobalt-based zeolite imidazole framework (ZIF). Benefiting from the strong synergistic effect and unique 3D structure, the CoP/NCNT-CP hybrid loaded on Ni foam exhibited excellent electrocatalytic HER performance in base with a low overpotential of 165 mV at a current density of 10 mA cm-2, which is competitive with the previously reported Co-based hybrid electrocatalysts. Furthermore, the CoP/NCNT-CP also demonstrated high HER electrocatalytic activities in both neutral and acidic conditions with the overpotentials of 203 and 305 mV at the current density of 10 mA cm-2. Additionally, the bifunctional CoP/NCNT-CP electrode simultaneously acted as an anode for hydrazine oxidation reaction (HzOR) and a cathode for HER. Excellent catalytic performance was demonstrated in base conditions with a low cell potential of 0.89 V at 10 mA cm-2, which was much lower than the voltage of overall water splitting (1.91 V) at the same current density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call