Abstract

In recent years, metal-organic framework derivatives have been regarded as materials with great potential for water treatment applications. In this study, we employed a polyvinylpyrrolidone (PVP)-assisted copper-cobalt bimetallic zeolitic imidazole framework (ZIF) as a template to rationally design nanosheet-like mixed metal oxide embedded nitrogen-doped carbon (CuCoO-PC). CuCoO-PC exhibited excellent degradation potential towards metronidazole (MNZ) and achieved almost complete degradation within 7 min through the activation of peroxymonosulfate (PMS). Importantly, the introduction of copper into CuCoO-PC established strong interactions between copper and cobalt, accelerating the activation performance of PMS. Furthermore, PVP, rich in nitrogen atoms, formed strong coordination interactions with ZIF precursors, which effectively protected the morphological stability of ZIF at high temperature, preventing collapse and aggregation. Meanwhile, the formation of nitrogen-doped carbon networks provides a pathway for the generation of non-radical. The study found that CuCoO-PC continuously activated PMS, generating various reactive oxygen species (ROS), among which SO4•- and 1O2 played decisive roles. By calculating the HOMO, LUMO, and Fukui functions, we identified the reactive sites of MNZ and proposed possible degradation pathways. CuCoO-PC demonstrated excellent catalytic performance, reduced toxicity of intermediate products, and good reusability, all of which highlight its enormous potential in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call