Abstract

Through this work, we are reporting high-performance ZIF-8 @polycarbonate nanocomposite membranes with satisfactory structural stability for improving the gas separation performance. ZIF-8 nanoparticles were synthesised using the wet chemical route with cubic morphology and controlled size using CTAB as a surfactant. The membranes were prepared using the solution casting method by adding ZIF-8 filler at various concentrations. The synthesised filler material and MMMs were characterised through X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), andRAMAN spectroscopy techniques. The gas separation measurements were taken using H2, CO2, and N2 gas in the purest form. The SEM results confirm the formation of spherulite-like morphology with the addition of ZIF-8 due to the crystallisation of the polymer, which increased the membrane's free volume and opened up additional pathways for the transportation of the gas molecules. The gas separation results confirmed that the 15 wt% ZIF-8/PC nanocomposite membrane showed the maximum H2 permeability of 180,970 barrer with an increment of 316.03%, while H2/CO2 and H2/N2 selectivity showed the increments of 89.43% and 103.64%, respectively. Therefore, this PC/ZIF-8 system seems to be a promising approach to developing new H2 selective membranes with high gas permeability and gas selectivity values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.