Abstract

In this work, a novel ultrasensitive aptasensor for deoxynivalenol (DON) detection based on the polyethyleneimine-functionalised porous reduced graphene oxide loaded gold nanowires (PEI-PrGO/AuNWs) and methylene blue (MB)-labelled zeolitic imidazolate framework-8 (ZIF-8) signal amplification strategy was proposed. PEI-PrGO/AuNWs with large surface area and excellent conductivity were used as modification materials on bare gold electrodes, which could increase the combining of complementary strand (cDNA) on the electrode substrate and accelerate the electron transfer efficiency. Furthermore, a novel electrochemical signal probe was synthesized using streptavidin-modified zeolitic imidazolate framework-8 (ZIF-8/SA) as a carrier loaded with MB and reverse complementary chain (sDNA). In the presence of DON, the signal probe was introduced to the electrode surface by Watson-Crick base pairing after specific binding of DON to the aptamer (Apt). As expected, under the optimal conditions, the DON concentration was linearly related to the peak current generated by the prepared aptasensor, and the measured data were combined with theoretical calculations to obtain a detection limit of 2.23 × 10−9 mg/mL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call