Abstract

Continuous ZIF-8 membranes have showed great potential for gas separation. The prospect is subjected to two pivotal issues: shorten the time to construct the ZIF-8 selective layer and tightly bond ZIF-8 layer onto the substrate. In our previous work, Zn(II)-doped polydopamine (Zn-PDA) linkage layer was proposed and effectual to solve these problems. In this research, the mechanism likely to support the improvements is studied intensively. The dominant factor is that Zn(II) ions can be chelating and depositing sufficiently in the linkage layer. The strongly alkaline condition for dopamine polymerization is also beneficial to Zn(II) chelation and deposition, which has been confirmed by DFT simulation, together with characterization tests, e.g., XPS, FTIR, and Zn(OH)2 precipitation for Zn(II)–O coordination. Phenolic hydroxyl groups are deprotonated in the strongly alkaline environment with high Mulliken charge (−0.515 & −0.524 e) and become strong chelation sites to Zn(II). Subsequently, Zn(II) clusters extensively filled in the PDA linkage layer are acting as the starting sites for ZIF-8 heterogeneous nucleation and growth. The correspondence between Zn(II) clusters probed by EDX and nascent ZIF-8 crystals visualized by FE-SEM can support this phenomenon clearly. On the whole, the abundant starting sites in Zn-PDA enhanced ZIF-8 growth, and ZIF-8 growth from the rooting-in Zn(II) clusters created an indented and hinged boundary for tightly bonding ZIF-8 layer onto the substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.