Abstract

Personal protective equipment against chemical warfare agents and other toxic chemicals must be protective, be breathable, and have a low thermal burden. Selectively permeable membranes are promising candidates for such equipment. In this study, a hybrid membrane consisting of a continuous and thin zeolitic imidazolate framework (ZIF)-8 layer on an oxygen-rich small-flake graphene oxide layer was produced using a simple and scalable synthesis method. The small intrinsic pores of ZIF-8 allow it to selectively separate chemicals via size exclusion while permitting water vapor to permeate out. The ZIF-8/graphene oxide membrane had high selectivity for the penetration of water vapor over nerve agent simulants (ratio of dimethyl methylphosphonate to water vapor transmittance rates of ∼312) with a high water vapor transmittance rate of 3000 g m-2 day-1. This protective barrier layer is a promising material for next-generation protective clothing with enhanced comfort and operability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call