Abstract

ZIF-67@ATP was prepared by the in situ growth of the zeolite imidazole frame (ZIF-67) on the surface of attapulgite (ATP). The structure and surface morphology of ZIF-67@ATP were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Different mass fractions of ATP and ZIF-67@ATP were added to ethylene vinyl acetate (EVA)/magnesium hydroxide (MH) composites as flame retardant synergists. The flame retardancy of EVA composites was evaluated by the limiting oxygen index (LOI) test, UL-94 test and cone calorimeter test. Composites containing 3 wt% of ZIF-67@ATP reached an LOI value of 43% and a V-0 rating in the UL-94 test, and the ignition time of the composite increased from 38 s to 56 s. The tensile strength and impact strength of the composites did not change significantly, but the elongation at break increased greatly. Typically, for composites containing 4 wt% of ZIF-67@ATP, the elongation at break of the composites increased from 69.5% to 522.2% compared to the samples without the synergist. This study provides novel insights into the application of attapulgite in the field of flame retardant polymer materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call