Abstract

Transition metal phosphides (TMPs) are prospective anode materials for lithium-ion batteries (LIBs) due to their high theoretical capacities and low redox voltages. Herein, we report a template directing method to develop a tube-sheath hybrid composing of cobalt phosphide particles encapsulated in metal organic frameworks (MOFs) derived N-doped carbon sheaths (CoxP@NC). The utilization of directing template leads to a homogenous distribution of the subsequently formed cobalt phosphide particles, restrains the aggregation of cobalt phosphides, and thus results in the superb rate capability and cyclability. Contributable to the integrated merits of the interior downsized cobalt phosphide particles and the outer ZIF-67 derived porous carbon sheath, the volume expansion during cycling is effectively suppressed. The CoxP@NC hybrid shows superb electrochemical performance as anode material for LIB, with good reversible capacity of 928 mAh·g−1 after 100 cycles at 0.1 A g−1, and high stability of 526 mAh·g−1 after 600 cycles at 1.0 A g−1. This work provides a route for rational design of MOF derived carbon-based anode material for LIB, which could also be applied as a promising platform in diverse field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.