Abstract

Zheng classification is a very important step in the diagnosis of traditional Chinese medicine (TCM). In clinical practice of TCM, feature values are often missing and incomplete cases. The performance of Zheng classification is strictly related to rates of missing feature values. Based on the pattern of the missing feature values, a new approach named local-validity is proposed to classify zheng classification with missing feature values. Firstly, the maximum submatrix for the given dataset is constructed and local-validity method finds subsets of cases for which all of the feature values are available. To reduce the computational scale and improve the classification accuracy, the method clusters subsets with similar patterns to form local-validity subsets. Finally, the proposed method trains a classifier for each local-validity subset and combines the outputs of individual classifiers to diagnose zheng classification. The proposed method is applied to the real liver cirrhosis dataset and three public datasets. Experimental results show that classification performance of local-validity method is superior to the widely used methods under missing feature values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.