Abstract

Genome-wide association studies have identified more than 300 loci associated with type 2 diabetes mellitus; however, the mechanisms underlying their role in type 2 diabetes mellitus susceptibility remain largely unknown. Zinc finger AN1-type domain 3 (ZFAND3), known as testis-expressed sequence 27, is a type 2 diabetes mellitus-susceptibility gene. Limited information is available regarding the physiological role of ZFAND3 in vivo. This study aimed to investigate the association between ZFAND3 and type 2 diabetes mellitus. ZFAND3 was significantly upregulated in the liver of diabetic mice compared to wild-type mice. To overexpress ZFAND3, we generated a ZFAND3-expressing adenovirus (Ad) vector using an improved Ad vector exhibiting significantly lower hepatotoxicity (Ad-ZFAND3). Glucose tolerance was significantly improved in Ad-ZFAND3-treated mice compared to the control Ad-treated mice. ZFAND3 overexpression in the mouse liver also improved insulin resistance. Furthermore, gluconeogenic gene expression was significantly lower in primary mouse hepatocytes transduced with Ad-ZFAND3 than those transduced with the control Ad vector. The present results suggest that ZFAND3 improves glucose tolerance by improving insulin resistance and suppressing gluconeogenesis, serving as a potential novel therapeutic target for type 2 diabetes mellitus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call