Abstract
We use zeta function techniques to give a finite definition for the Casimir energy of an arbitrary ultrastatic spacetime with or without boundaries. We find that the Casimir energy is intimately related to, but not identical to, the one-loop effective energy. We show that in general the Casimir energy depends on a normalization scale. This phenomenon has relevance to applications of the Casimir energy in bag models of QCD. Within the framework of Kaluza-Klein theories we discuss the one-loop corrections to the induced cosmological and Newton constants in terms of a Casimir like effect. We can calculate the dependence of these constants on the radius of the compact dimensions, without having to resort to detailed calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.