Abstract

The black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), is an important agricultural pest. Phoxim is an organophosphate insecticide that has been widely used to control A. ipsilon. The extensive application of phoxim has resulted in a reduction in phoxim susceptibility in A. ipsilon. However, the molecular mechanisms underlying phoxim tolerance in A. ipsilon remain unclear. In this work, we report the involvement of AiGSTz1, a zeta class glutathione S-transferase, in phoxim tolerance in A. ipsilon. Exposure to a sublethal concentration (LC50) of phoxim dramatically upregulated the transcription level of the AiGSTz1 gene in A. ipsilon larvae, and this upregulation might be caused by phoxim-induced oxidative stress. The recombinant AiGSTz1 protein expressed in Escherichia coli was able to metabolize phoxim. Furthermore, AiGSTz1 displayed antioxidant activity to protect against oxidative stress. Knockdown of AiGSTz1 by RNA interference significantly increased the mortality rate of A. ipsilon larvae in response to phoxim. In addition, the transcription factor AiCncC can bind to the cap ‘n’ collar isoform C: muscle aponeurosis fibromatosis (CncC:Maf) binding site in the putative promoter of the AiGSTz1 gene. Silencing of AiCncC resulted in a dramatic downregulation of AiGSTz1. These results indicated that AiGSTz1 is involved in phoxim tolerance and is potentially regulated by AiCncC. These findings provide valuable insights into the defense mechanisms used by A. ipsilon against phoxim.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.