Abstract

Nano zero-valent metals adsorption coupled with advanced oxidation for environmental pollutants removal has been gaining attention recently. In this study, zero-valent iron-manganese (nZVIM) bimetallic nanocomposites were prepared via one-pot borohydride reduction and coupled with hypochlorite (ClO−) oxidation for enhanced thallium (Tl) removal from wastewater. Amorphous nZVIM nanoparticles were successfully synthesized, with a specific surface area of 106.89 m2/g, and a saturation magnetization of 65.16 emu/g. In comparison with the nZVIM adsorption or ClO− oxidation alone, the hybrid nZVIM/ClO− process achieved much faster Tl(I) removal rate over a wide pH range from 6 to 10. Maximum Tl(I) removal capacity was as high as 990.0 mg/g. The oxidation-induced adsorption for Tl(I) removal well followed the pseudo-first kinetic order model. Stable and effective adsorbent regeneration was achieved during the cyclic adsorption-desorption tests. This process also had high resistance to the interference of external cations, can act as an effective pretreatment for Tl(I) removal from the actual saline industrial wastewater. The main mechanisms for Tl(I) removal were found to be oxidation, surface precipitation, pore retention, and surface complexation. The nZVIM coupled with ClO− approach has great potential for Tl(I) removal from wastewater, and its application in other fields is highly anticipated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.