Abstract

Treatment to remove 2-bromo-4,6-dinitroaniline (BDNA) from wastewater is urgently needed owing to its carcinogenicity, mutagenicity, and teratogenicity. Hydrolysis acidification (HA) is widely used to treat wastewater to improve biodegradability and resource utilization. Thus, a zero-valent iron (ZVI)-coupled HA system was operated to treat BDNA-containing wastewater for the first time, with emphasis on the performance and enhanced mechanisms. The improved results for BDNA removal efficiency and B/C ratio and the decreased acute toxicity suggested that ZVI addition benefited the formation of advantageous products for subsequent biological treatment. The volatile fatty acids (VFAs) ratio (CHAc:CHPr:CHBu) was optimized from 21:5:4 to 29:5:6, which benefited the utilization of wastewater resources for lipid generation. ZVI characterization, density functional theory (DFT) calculations, extracellular polymeric substances (EPS) analysis, molecular ecological network analysis (MENA), and redundancy analysis (RDA) of the microbial community further revealed that the enhanced mechanisms were summarized as beneficial interactions between ZVI and microorganisms. The ZVI was protected from excessive corrosion and lowered the oxidation-reduction potential (ORP), a key environmental factor, resulting in differences in microbial communities. These differences were presented as the enrichment of keystone species (e.g., Lactococcus), which function in BDNA reduction and VFAs generation. Moreover, ZVI promoted electron transfer, as proven by the high electron transfer capacity (ETC) of 0.452 and 0.361 μmol e–/g VSS in the RZVI and blank systems, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call