Abstract
Saddle-point problems have recently gained increased attention from the machine learning community, mainly due to applications in training Generative Adversarial Networks using stochastic gradients. At the same time, in some applications only a zeroth-order oracle is available. In this paper, we propose several algorithms to solve stochastic smooth (strongly) convex-concave saddle-point problems using zeroth-order oracles and estimate their convergence rate and its dependence on the dimension $n$ of the variable. In particular, our analysis shows that in the case when the feasible set is a direct product of two simplices, our convergence rate for the stochastic term is only by a $\log n$ factor worse than for the first-order methods. We also consider a mixed setup and develop 1/2th-order methods that use zeroth-order oracle for the minimization part and first-order oracle for the maximization part. Finally, we demonstrate the practical performance of our zeroth-order and 1/2th-order methods on practical problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.