Abstract

We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic) impurity with small impurity strength. However, by increasing the size of the impurity in a fixed-size host superconductor, we find a decreasing critical temperature Tc of the host superconductor, which agrees with the results in condensed matter literatures. More importantly, the phase transition at the critical impurity strength (or the critical temperature) is of zeroth order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.