Abstract

The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the traditional approach to thermodynamics is discussed. It is shown that the traditional approach does not need to appeal to the second law to solve with rigor the type of problems discussed by Gislason and Craig: in problems not involving chemical reaction, the zeroth law and the condition for mechanical equilibrium, complemented by the first law and any necessary equations of state, are sufficient to determine the final state. We have to invoke the second law only if we wish to calculate the change of entropy. Since most students are exposed to a traditional approach to thermodynamics, the examples of Gislason and Craig are re-examined in terms of the traditional formulation. The maximization of the entropy in the final state can be verified in the traditional approach quite directly by the use of the fundamental equations of thermodynamics. This approach uses relatively simple mathematics in as general a setting as possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call