Abstract

We compute the zero-temperature equation of state of a mixture of two fermionic atomic species with repulsive interspecies interactions using second-order perturbation theory. We vary the interaction strength, the population, and the mass imbalance, and we analyze the competition between different states: homogeneous, partially separated, and fully separated. The canonical phase diagrams are determined for various mass ratios, including the experimentally relevant case of the $^{6}\mathrm{Li}$-$^{40}\mathrm{K}$ mixture. We find substantial differences with respect to the equal-mass case: phase separation occurs at weaker interaction strength, and the partially separated state can be stable even in the limit of a large majority of heavy atoms. We highlight the effects due to correlations by making comparisons with previous mean-field results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.