Abstract

Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $w_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow \{0,1,\dots,r-1\}$ admits a $k$-term arithmetic progression $a,a+d,\dots,a+(k-1)d$ with $\sum_{j=0}^{k-1} \chi(a+jd) \equiv 0 \,(\mathrm{mod }\,r)$. We investigate these numbers as well as a mixed monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\mathrm{\mathfrak{z}}}(k;r)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.