Abstract
Traffic sign recognition is a complex and challenging yet popular problem that can assist drivers on the road and reduce traffic accidents. Most existing methods for traffic sign recognition use convolutional neural networks (CNNs) and can achieve high recognition accuracy. However, these methods first require a large number of carefully crafted traffic sign datasets for the training process. Moreover, since traffic signs differ in each country and there is a variety of traffic signs, these methods need to be fine-tuned when recognizing new traffic sign categories. To address these issues, we propose a traffic sign matching method for zero-shot recognition. Our proposed method can perform traffic sign recognition without training data by directly matching the similarity of target and template traffic sign images. Our method uses the midlevel features of CNNs to obtain robust feature representations of traffic signs without additional training or fine-tuning. We discovered that midlevel features improve the accuracy of zero-shot traffic sign recognition. The proposed method achieves promising recognition results on the German Traffic Sign Recognition Benchmark open dataset and a real-world dataset taken from Sapporo City, Japan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.