Abstract
The key of zero-shot learning is to use the visual-semantic embedding to transfer the knowledge from seen classes to unseen classes. In this paper, we propose to build the visual-semantic embedding by maximizing the mutual information between visual features and corresponding attributes. Then, the mutual information between visual and semantic features can be utilized to guide the knowledge transfer from seen domain to unseen domain. Since we are primarily interested in maximizing mutual information, we introduce the noise-contrastive estimation to calculate lower-bound value of mutual information. Through the noise-contrastive estimation, we reformulate zero-shot learning as a binary classification problem, i.e., classifying the matching visual-semantic pairs (positive samples) and mismatching visual-semantic pairs (negative/noise samples). Experiments conducted on five datasets demonstrate that the proposed mutual information estimators outperforms current state-of-the-art methods both in conventional and generalized zero-shot learning settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.