Abstract
The study of the polynomial solutions of the generalized Lamé differential equation gives rise to Stieltjes and Van Vleck polynomials. Marden has, under quite general conditions, established varied generalizations of the results proved earlier by Stieltjes, Van Vleck, Bocher, Klein, and, Pólya, concerning the location of the zeros of such polynomials. We study the corresponding problem for yet another form of the generalized Lamé differential equation and generalize some recent results due to Zaheer and to Alam. Furthermore, applications of our results to the standard form of this differential equation immediately furnish the corresponding theorems of Marden. Consequently, our main theorem of this paper may be considered as the most general result obtained thus far in this direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.