Abstract

The zeros of classical Eisenstein series satisfy many intriguing properties. Work of F. Rankin and Swinnerton-Dyer pinpoints their location to a certain arc of the fundamental domain, and recent work by Nozaki explores their interlacing property. In this paper we extend these distribution proper- ties to a particular family of Eisenstein series on (2) beca use of its elegant connection to a classical Jacobi elliptic function cn(u) which satisfies a differ- ential equation (see formula (1.2)). As part of this study we recursively define a sequence of polynomials from the differential equation mentioned above that allow us to calculate zeros of these Eisenstein series. We end with a result linking the zeros of these Eisenstein series to an L-series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.