Abstract
A good strategy in order to obtain the asymptotic behavior of Sobolev orthogonal polynomials is to prove that the multiplication operator is bounded in the appropriate Sobolev space, which implies the boundedness of their zeros. In this paper we obtain a very simple characterization of the boundedness of the multiplication operator, by proving a generalization of the Muckenhoupt inequality with two measures to three. These results are obtained for a large class of measures which includes the most usual examples, for instance, every Jacobi weight (and even every generalized Jacobi weight) with any finite amount of Dirac deltas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.