Abstract
Random matrix theory has successfully modeled many systems in physics and mathematics, and often analysis in one area guides development in the other. Hughes and Rudnick computed 1-level density statistics for low-lying zeros of the family of primitive Dirichlet L-functions of fixed prime conductor Q, as Q→∞, and verified the unitary symmetry predicted by random matrix theory. We compute 1and 2-level statistics of the analogous family of Dirichlet L-functions over Fq(T ). Whereas the Hughes-Rudnick results were restricted by the support of the Fourier transform of their test function, our test function is periodic and our results are only restricted by a decay condition on its Fourier coefficients. Our statements are more general and also include error terms. In concluding, we discuss an Fq(T )-analogue of Montgomery’s Hypothesis on the distribution of primes in arithmetic progressions, which Fiorilli and Miller show would remove the restriction on the Hughes-Rudnick results. CONTENTS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.