Abstract
Our purpose is to bring to the attention of the optical community our recent work on the numerical evaluation of zero-order Hankel transforms; such techniques have direct application in optical diffraction theory and in optical beam propagation. The two algorithms we discuss (Filon–Simpson and Filon-trapezoidal) are reasonably fast and very accurate; furthermore, the errors incurred are essentially independent of the magnitude of the independent variable. Both algorithms are then compared with the recent (fast-Fourier-transform-based Hankel transform algorithm developed by Magni, Cerullo, and Silvestri (MCS algorithm) [J. Opt. Soc. Am. A9, 2031 (1992)] and are shown to be superior. The basic assumption of these algorithms is that the term in the integrand multiplying the Bessel function is relatively smooth compared with the oscillations of the Bessel function. This condition is violated when the inverse Hankel transform has to be computed, and the Filon scheme requires a very large number of quadrature points to achieve even moderate accuracy. To overcome this deficiency, we employ the sampling expansion (Whittaker’s cardinal function) to evaluate numerically the inverse Hankel transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.