Abstract

In an anisotropic medium, a normal-incidence wave is multiply transmitted and reflected down to a reflector where the phase-velocity vector is parallel to the interface normal. The ray code of the upgoing wave is equal to the ray code of the downgoing wave in reverse order. The geometric spreading, KMAH index, and transmission and reflection coefficients of the normal-incidence ray can be expressed in terms of products or sums of the corresponding quantities of the one-way normal and normal-incidence-point (NIP) waves. Here, we show that the amplitude of the ray-theoretic Green’s function for the reflected wave also follows a similar decomposition in terms of the amplitude of the Green’s function of the NIP wave and the normal wave. We use this property to propose three schemes for true-amplitude poststack depth migration in anisotropic media where the image represents an estimate of the zero-offset reflection coefficient. The first is a map migration procedure in which selected primary zero-offset reflec...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call