Abstract

To solve the time-variant Sylvester equation, in 2013, Li et al. proposed the zeroing neural network with sign-bi-power function (ZNN-SBPF) model via constructing a nonlinear activation function. In this article, to further improve the convergence rate, the zeroing neural network with coefficient functions and adjustable parameters (ZNN-CFAP) model as a variation in zeroing neural network (ZNN) model is proposed. On the basis of the introduced coefficient functions, an appropriate ZNN-CFAP model can be chosen according to the error function. The high convergence rate of the ZNN-CFAP model can be achieved by choosing appropriate adjustable parameters. Moreover, the finite-time convergence property and convergence time upper bound of the ZNN-CFAP model are proved in theory. Computer simulations and numerical experiments are performed to illustrate the efficacy and validity of the ZNN-CFAP model in time-variant Sylvester equation solving. Comparative experiments among the ZNN-CFAP, ZNN-SBPF, and ZNN with linear function (ZNN-LF) models further substantiate the superiority of the ZNN-CFAP model in view of the convergence rate. Finally, the proposed ZNN-CFAP model is successfully applied to the tracking control of robot manipulator to verify its practicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.