Abstract
ABSTRACTIn this paper, we briefly overview different zero-inflated probability distributions. We compare the performance of the estimates of Poisson, Generalized Poisson, ZIP, ZIGP and ZINB models through Mean square error (MSE), bias and Standard error (SE) when the samples are generated from ZIP distribution. We propose a new estimator referred to as probability estimator (PE) of inflation parameter of ZIP distribution based on moment estimator (ME) of the mean parameter and compare its performance with ME and maximum likelihood estimator (MLE) through a simulation study. We use the PE along with ME and MLE to fit ZIP distribution to various zero-inflated datasets and observe that the results do not differ significantly. We recommend using PE in place of MLE since it is easy to calculate and the simulation study in this paper demonstrates that the PE performs as good as MLE irrespective of the sample size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.