Abstract

Depending on the geometry of their Fermi surfaces, Weyl semimetals and their analogs in classical systems have been classified into two types. In type-I Weyl semimetals (WSMs), the conelike spectrum at the Weyl point is not tilted, leading to a pointlike closed Fermi surface. In type-II WSMs, on the contrary, the energy spectrum around the Weyl point is strongly tilted such that the Fermi surface transforms from a point into an open surface. Here, we demonstrate, both theoretically and experimentally, a new type of (classical) Weyl semimetal whose Fermi surface is neither a point nor a surface, but a flat line. The distinctive Fermi surfaces of such semimetals, dubbed as type-III or zero-index WSMs, gives rise to unique physical properties: one of the edge modes of the semimetal exhibits a zero index of refraction along a specific direction, in stark contrast to type-I and type-II WSMs for which the index of refraction is always nonzero. We show that the zero-index response of such topological phases enables exciting applications such as extraordinary wave transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.