Abstract

We report a detailed analysis of the Drude weights for both thermal and spin transport in one dimensional spin-1/2 systems by means of exact diagonalization and analytic approaches at finite temperatures. Transport properties are studied first for the integrable XXZ model and second for various non-integrable systems such as the dimerized chain, the frustrated chain, and the spin ladder. We compare our results obtained by exact diagonalization and mean-field theory with the Bethe ansatz, bosonization and other numerical studies in the case of the anisotropic Heisenberg model both in the gapless and gapped regime. In particular, we find indications that the Drude weight for spin transport is finite in the thermodynamic limit for the isotropic chain. For the non-integrable models, a finite-size analysis of the numerical data for the Drude weights is presented covering the entire parameter space of the dimerized and frustrated chain. We also discuss which conclusions can be drawn from bosonization regarding the question whether the Drude weights are finite or not. One of our main results is that the Drude weights vanish in the thermodynamic limit for non-integrable models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.