Abstract

Measurements of conductance spectra in a superconductor - topological insulator - normal metal thin film junctions of NbN-$\rm Bi_2Se_3$-Au are reported. Junctions with ex-situ and in-situ prepared $\rm NbN-Bi_2Se_3$ interfaces were studied. At low temperatures, all the ex-situ junctions showed coherence peaks in their conductance spectra, but imbedded robust zero bias conductance peaks were observed only in junctions with a metallic or a metal to insulator transition below $\rm T_c$ of the NbN electrode. The in-situ junctions which had about two orders of magnitude lower resistance at low temperatures, generally showed flat conductance spectra at low bias, with no coherence or broad Andreev peaks, since the critical current of the NbN electrode was reached first, at voltage bias below the energy gap of the superconductor. A weak zero bias conductance peak however, was observed in one of these junctions. We conclude that significant tunneling barriers, as in the ex-situ prepared junctions, are essential for the observation of coherence peaks and the zero energy bound states. The later seem to originate in the $\rm Bi_2Se_3$-NbN interface, as they are absent in reference Au-NbN junctions without the topological layer sandwiched in between.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.