Abstract

Background: Pressure is growing in North America for heavy-duty, long-haul trucking to reduce greenhouse gas (GHG) emissions, ultimately to zero. With freight volumes rising, improvement depends on zero-emissions technologies, e.g., battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). However, emissions reductions are constrained by technological and commercial realities. BEVs and FCEVs are expensive. Further, BEVs depend on existing electricity grids and FCEVs rely on steam–methane reforming (SMR) or electrolysis using existing grids to produce hydrogen. Methods: This study assembles publicly available data from reputable sources to estimate breakeven vehicle purchase prices under various conditions to match conventional (diesel) truck prices. It also estimates GHG emissions reductions. Results: BEVs face numerous obstacles, including (1) limited range; (2) heavy batteries and reduced cargo capacity; (3) long recharging time; and (4) uncertain hours-of-service (HOS) implications. On the other hand, FCEVs face two primary obstacles: (1) cost and availability of hydrogen and (2) cost of fuel cells. Conclusions: In estimating emissions reductions and economic feasibility of BEVs and FCEVs versus diesel trucks, the primary contributions of this study involve its consideration of vehicle prices, carbon taxes, and electricity grid capacity constraints and demand fees. As electricity grids reduce their emissions intensity, grid congestion and capacity constraints, opportunities arise for BEVs. On the other hand, rising electricity demand fees benefit FCEVs, with SMR-produced hydrogen a logical starting point. Further, carbon taxation appears to be less important than other factors in the transition to zero-emission trucking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.