Abstract

Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements. In this Letter, we report observation of such a large ZBCP in junction structures of normal metal (titanium/gold Ti/Au) + Dirac semimetal (cadmium arsenide Cd3As2) + conventional superconductor (aluminum Al), with a value close to four times that of the normal state conductance. Our detailed analyses suggest that this large ZBCP is most likely not caused by MZMs. We attribute the ZBCP, instead, to the existence of a supercurrent between two far-separated superconducting Al electrodes, which shows up as a zero-bias peak because of the circuitry and thermal fluctuations of the supercurrent phase, a mechanism conceived by Ivanchenko and Zil'berman more than 50 years ago [JETP 28, 1272 (1969)]. Our results thus call for extreme caution when assigning the origin of a large ZBCP to MZMs in a multiterminal semiconductor or topological insulator/semimetal setup. We thus provide criteria for identifying when the ZBCP is definitely not caused by an MZM. Furthermore, we present several remarkable experimental results of a supercurrent effect occurring over unusually long distances and clean perfect Andreev reflection features.

Highlights

  • Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material

  • One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements

  • In this Letter, we report observation of such a large ZBCP in junction structures of normal metal—Dirac semimetal—conventional superconductor, with a value close to four times that of the normal state conductance

Read more

Summary

Introduction

Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.