Abstract
This paper presents a zero-voltage-switching (ZVS) full-bridge dc-dc converter combing resonant and pulse-width-modulation (PWM) power conversions for electric vehicle battery chargers. In the proposed converter, a half-bridge LLC resonant circuit shares the lagging leg with a phase-shift full-bridge (PSFB) dc-dc circuit to guarantee ZVS of the lagging-leg switches from zero to full load. A secondary-side hybrid-switching circuit, which is formed by the leakage inductance, output inductor of the PSFB dc-dc circuit, a small additional resonant capacitor, and two additional diodes, is integrated at the secondary side of the PSFB dc-dc circuit. With the clamp path of a hybrid-switching circuit, the voltage overshoots that arise during the turn off of the rectifier diodes are eliminated and the voltage of bridge rectifier is clamped to the minimal achievable value, which is equal to secondary-reflected input voltage of the transformer. The sum of the output voltage of LLC resonant circuit and the resonant capacitor voltage of the hybrid-switching circuit is applied between the bridge rectifier and the output inductor of the PSFB dc-dc circuit during the freewheeling phases. As a result, the primary-side circulating current of the PSFB dc-dc circuit is instantly reset to zero, achieving minimized circulating losses. The effectiveness of the proposed converter was experimentally verified using a 4-kW prototype circuit. The experimental results show 98.6% peak efficiency and high efficiency over wide load and output voltage ranges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.