Abstract

Zero-valent aluminum (ZVAl) draws much attention due to its strong reducibility. However, under neutral pH conditions, the reduction ability of ZVAl for pollutant removal has still been suspected because of the formed compact surface film of Al-(hydr)oxide. In this study, unmodified ZVAl was employed to reductively remove aqueous pollutants over a wide pH range, and its performance and mechanism, especially at near-neutral pH, were systematically studied for the first time. Results demonstrated that ZVAl had a wide range of pH applicability from 2 to 12, even in neutral environment. Typical nitro compound nitrobenzene (NB), typical azo dye acid orange 7 (AO7), and typical inorganic heavy metal ion Cr(VI) can be effectively removed at initial pH 7. Based on the changes of pH, ORP, DO, Al ions and TOC of the reaction solution, and the determination of reduction products of NB by UV–Vis and GC-MS, we found that NB removal by ZVAl can be primarily attributed to the reduction role. NB was reduced to nitrosobenzene firstly, and to aniline finally. Meanwhile, the adsorption phenomenon existed in this system. Next, the surface reaction mechanism was deeply revealed through the characterization of ZVAl particles before and after reaction by SEM-EDS, TEM, HRTEM, XRD, and XPS. It was found that ZVAl powders with core/shell structure participated in the redox reaction, and that ZVAl core was corroded, generating Al-(hydr)oxide. ZVAl surface oxide film was not directly removed, instead of a rougher one. Finally, the proposed reductive mechanism of aqueous pollutants by ZVAl was speculated from the angle of electronic competition. In water environment, O2, H2O and pollutants, with a clear competitive relationship, can capture electrons released from ZVAl. When pollutant's opportunities for getting electrons are enhanced, efficiently reductive reactions for pollutant removal can take place, even at near-neutral pH. In a word, ZVAl is a promising material to remove aqueous pollutants over a wide pH range, even in neutral environment, which exhibits its great potential as an effective and environment-friendly agent for pollutant removal from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call