Abstract

Bi3+-activated phosphors have been proven to have potential applications foreground in white light-emitting diodes (WLED), plant growth lamps and temperature sensing. Therefore, it is urgent to exploit high-efficiency Bi3+-activated phosphors. Herein, a novel broadband yellow-emitting phosphor Ba2GdGaO5:Bi3+ with high internal quantum efficiency (IQE = 77%) was obtained based on metal to metal charge transfer (MMCT) between Bi3+ ground state and Gd3+ excited states. The photoluminescence excitation (PLE) spectrum and photoluminescence (PL) spectrum range from 225 nm to 400 nm and 400 nm to 700 nm, respectively, which can avoid the reabsorption phenomenon efficiently. Besides, Ba2GdGaO5:Bi3+ has superior thermal stability and it shows zero-thermal-quenching at 150 °C. The K+ doping hardly changes the thermal stability and can improve the PL intensity to 133.1% when the K+ concentration is 2%. Finally, a phosphor-convert WLED (pc-WLED) was simply synthesized by Ba2GdGaO5:Bi3+ and BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors. The doping of Eu3+ can significantly enhance the color rendering index (CRI, from 88.1 to 91.5) and reduce the correlated color temperature (CCT, from 4911 K to 4014 K). The above experimental results demonstrated that the phosphor has great application prospect in WLED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.