Abstract
Phase coherence and vortex order in the fully frustrated XY model on a two-dimensional honeycomb lattice are studied by extensive Monte Carlo simulations using the parallel tempering method and finite-size scaling. No evidence is found for an equilibrium order-disorder or a spin/vortex-glass transition, suggested in previous simulation works. Instead, the scaling analysis of correlations of phase and vortex variables in the full equilibrated system is consistent with a phase transition where the critical temperature vanishes and the correlation lengths diverge as a power-law with decreasing temperatures and corresponding critical exponents $\nu_{ph}$ and $\nu_{v}$. This behavior and the near agreement of the critical exponents suggest a zero-temperature transition scenario where phase and vortex variables remain coupled on large length scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.