Abstract

We solve the Edwards-Anderson model (EA) in different Husimi lattices using the cavity method at replica symmetric (RS) and 1-step of replica symmetry breaking (1RSB) levels. We show that, at T = 0, the structure of the solution space depends on the parity of the loop sizes. Husimi lattices with odd loop sizes may have a trivial paramagnetic solution thermodynamically relevant for highly frustrated systems while, in Husimi lattices with even loop sizes, this solution is absent. The range of stability under 1RSB perturbations of this and other RS solutions is computed analytically (when possible) or numerically. We also study the transition from 1RSB solutions to paramagnetic and ferromagnetic RS solutions. Finally we compare the solutions of the EA model in Husimi lattices with that on the (short loops free) Bethe lattices, showing that already for loop sizes of order 8 both models behave similarly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.