Abstract

The zero-temperature random-field Ising model is solved analytically for magnetization versus external field for a bilayered Bethe lattice. The mechanisms of infinite avalanches which are observed for small values of disorder are established. The effects of variable interlayer interaction strengths on infinite avalanches are investigated. The spin-field correlation length is calculated and its critical behavior is discussed. Direct Monte Carlo simulations of spin-flip dynamics are shown to support the analytical findings. We find, paradoxically, that a reduction of the interlayer bond strength can cause a phase transition from a regime with continuous magnetization reversal to a regime where magnetization exhibits a discontinuity associated with an infinite avalanche. This effect is understood in terms of the proposed mechanisms for the infinite avalanche.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.