Abstract

We investigate zero-temperature dynamics for a homogeneous ferromagnetic Ising model on the homogeneous tree of degree three (𝕋) with random (i.i.d. Bernoulli) spin configuration at time 0. Letting θ denote the probability that any particular vertex has a +1 initial spin, for infinite spin clusters do not exist at time 0 but we show that infinite ‘spin chains’ (doubly infinite paths of vertices with a common spin) exist in abundance at any time ϵ > 0. We study the structure of the subgraph of 𝕋 generated by the vertices in time-ϵ spin chains. We show the existence of a phase transition in the sense that, for some critical θ c with spin chains almost surely never form for θ < θc but almost surely do form in finite time for θ > θc . We relate these results to certain quantities of physical interest, such as the t → ∞ asymptotics of the probability that any particular vertex changes spin after time t.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.