Abstract

This paper considers the problem of two-player zero-sum stochastic differential game with both players adopting impulse controls in finite horizon under rather weak assumptions on the cost functions ($c$ and $\chi$ not decreasing in time). We use the dynamic programming principle and viscosity solutions approach to show existence and uniqueness of a solution for the Hamilton-Jacobi-Bellman-Isaacs (HJBI) partial differential equation (PDE) of the game. We prove that the upper and lower value functions coincide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.