Abstract
The minimax theorem for zero-sum games is easily proved from the strong duality theorem of linear programming. For the converse direction, the standard proof by Dantzig is known to be incomplete. We explain and combine classical theorems about solving linear equations with nonnegative variables to give a correct alternative proof more directly than Adler. We also extend Dantzig’s game so that any max-min strategy gives either an optimal LP solution or shows that none exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.