Abstract
Lifelong reinforcement learning (LRL) is an important approach to achieve continual lifelong learning of multiple reinforcement learning tasks. The two major methods used in LRL are task decomposition and policy knowledge extraction. Policy knowledge extraction method in LRL can share knowledge for tasks in different task domains and for tasks in the same task domain with different system environmental coefficients. However, the generalization ability of policy knowledge extraction method is limited on learned tasks rather than learned task domains. In this paper, we propose a cross-domain lifelong reinforcement learning algorithm with zero-shot policy generation ability (CDLRL-ZPG) to improve generalization ability of policy knowledge extraction method from learned tasks to learned task domains. In experiments, we evaluated CDLRL-ZPG performance on four task domains. And our results show that the proposed algorithm can directly generate satisfactory results without needing a trial and error learning process to achieve zero-shot learning in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.