Abstract
• A novel zero shot learning method for health signal processing through data augmentation. • The method includes three parts, and a detailed workflow is designed for each part. • The method does not rely on the attribute data set. • The method explores the reasons why the classifier makes the decisions and analyzes the explanations. In recent years, the number of Internet of Things (IoT) devices has increased rapidly. The Internet of Biometric Things (IoBT) can process biometrics and health signals, and it will greatly extend the range of biometric applications. The analysis of health signals in the IoBT can use computer-aided diagnosis techniques. However, most of the existing computer-aided diagnosis methods are developed for common diseases and are not suitable for rare diseases. Zero shot learning is a potential method for the computer-aided diagnosis of rare diseases because it can identify objects of unknown categories. However, the existing zero shot learning methods are based on attribute learning and rely on an attribute dataset. There is no attribute dataset for health signal processing. Therefore, the existing zero shot learning methods are not suitable for health signal processing. Based on the above background, we propose a zero shot augmentation learning model (ZSAL) in the IoBT for health signal processing. First, an expert doctor identifies the contour of a lesion and selects a background image without a lesion. Second, the computer automatically generates virtual images using zero shot augmentation technology. Finally, the generated virtual dataset is used to train a convolutional classifier, and then we apply the classifier to the computer-aided diagnosis of actual medical images. The experiment shows the efficiency and effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.