Abstract
We establish various properties for the zero sets of three families of bivariate Hermite polynomials. Special emphasis is given to those bivariate orthogonal polynomials introduced by Hermite by means of a Rodrigues type formula related to a general positive definite quadratic form. For this family we prove that the zero set of the polynomial of total degree n+m consists of exactly n+m disjoint branches and possesses n+m asymptotes. A natural extension of the notion of interlacing is introduced and it is proved that the zero sets of the family under discussion obey this property. The results show that the properties of the zero sets, considered as affine algebraic curves in R2, are completely different for the three families analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.