Abstract
An inverse semigroup S is said to be 0-semidistributive if its lattice ℒF (S) of full inverse subsemigroups is 0-semidistributive. We show that it is sufficient to study simple inverse semigroups which are not groups. Our main theorem states that such a simple inverse semigroup S is 0-semidistributive if and only if (1) S is E-unitary, (2) S is aperiodic, (3) for any a,b ∈ S/σ with ab ≠ 1, there exist nonzero integers n and m such that (ab) m = a n or (ab) m = b n , where σ is the minimum group congruence on S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.