Abstract
An analysis of liquid state cross polarization in AXN spin systems is presented. A two-level geometrical formalism derived from symmetry considerations provides a closed form description of the quantum dynamics for arbitrary N. A parallel discussion using a classical vector model explains the significance of the quantum mechanical solutions and illustrates the nature of the spin–spin correlations accompanying magnetization transfer. General expressions for the J cross polarization A signal with and without X decoupling are given. A discussion of RJCP and PCJCP pulse sequences introduced previously shows how manipulation of Hartmann–Hahn mismatch can advantageously modify cross-polarization dynamics. The quantum formalism demonstrates that efficient polarization transfer is equivalent to population inversion of an ensemble of fictitious spins subjected to different rf field intensities, and that pulse sequences for cross polarization can be constructed by analogy with conventional spin inversion techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.