Abstract
Splitting methods have recently received much attention due to the fact that many nonlinear problems arising in applied areas such as image recovery, signal processing and machine learning are mathematically modeled as a nonlinear operator equation and this operator is decomposed as the sum of two (possibly simpler) nonlinear operators. Most of the investigation on splitting methods is however carried out in the framework of Hilbert spaces. In this paper, we consider these methods in the setting of Banach spaces. We shall introduce a viscosity iterative forward–backward splitting method with errors to find zeros of the sum of two accretive operators in Banach spaces. We shall prove the strong convergence of the method under mild conditions. We also discuss applications of these methods to monotone variational inequalities, convex minimization problem and convexly constrained linear inverse problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Malaysian Mathematical Sciences Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.